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Abstract

The restricted Boltzmann machine (RBM) has been used as
building blocks for many successful deep learning models,
e.g., deep belief networks (DBN) and deep Boltzmann ma-
chine (DBM) etc. The training of RBM can be extremely
slow in pathological regions. The second order optimization
methods, such as quasi-Newton methods, were proposed to
deal with this problem. However, the non-convexity results
in many obstructions for training RBM, including the infea-
sibility of applying second order optimization methods. In
order to overcome this obstruction, we introduce an em-like
iterative project quasi-Newton (IPQN) algorithm. Specifical-
ly, we iteratively perform the sampling procedure where it is
not necessary to update parameters, and the sub-training pro-
cedure that is convex. In sub-training procedures, we apply
quasi-Newton methods to deal with the pathological problem.
We further show that Newton’s method turns out to be a good
approximation of the natural gradient (NG) method in RBM
training. We evaluate IPQN in a series of density estima-
tion experiments on the artificial dataset and the MNIST dig-
it dataset. Experimental results indicate that IPQN achieves
an improved convergent performance over the traditional CD
method.

Introduction
The restricted Boltzmann machine (RBM) is the building
blocks for many successful deep learning models, e.g., deep
belief networks (DBN) and deep Boltzmann machine (DB-
M) etc. These models have been successfully applied in
computer vision (Bengio et al. 2007; Osindero and Hin-
ton 2008; Poultney et al. 2006), natural language pro-
cessing (Collobert and Weston 2008), motion-capture da-
ta (Taylor, Hinton, and Roweis 2006) and information re-
trieval (Hinton and Salakhutdinov 2008). A RBM is a non-
convex graphical model which contains a layer of visible
units and a layer of hidden units. The hidden units give rise
to the unidentifiability which in turn directly results in the
non-convexity of RBM.

Typically, RBM is trained using Contrastive Divergence
(CD) learning, which can be considered as a stochastic gra-
dient descent (SGD) method. This optimization method is
concise. However, it is a well known fact in the optimization
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community that gradient descent is unsuitable for optimiz-
ing objectives that exhibit pathological curvature (Martens
2010).

Martens (2010) proposed a second order Hessian-Free op-
timization method, which can effectively deal with patho-
logical curvature, to train deep auto-encoders and neu-
ral networks. Similar to the Hessian-Free method, Des-
jardins (2013) introduced the Metric-Free Natural Gradien-
t algorithm for training deep Boltzmann machine (DBM).
However, the non-convexity of RBM could result in many
obstructions, including the infeasibility of applying 2-nd or-
der optimization methods.

We are committed to deal with this obstruction. We intro-
duce a novel iterative project quasi-Newton (IPQN) method
for training restricted Boltzmann machine. With the iter-
ative project method, our algorithm transforms the overall
training procedure into an iterative procedure, i.e., iterative-
ly perform the sampling procedure where it is not necessary
to update parameters, and the sub-training procedure that is
convex. We apply the curvature information based second
order quasi-Newton methods to the sub-training procedures
to deal with the pathological problem. In addition, our algo-
rithm can deal with another training obstruction caused by
the non-convexity, i.e., the saddle points whose neighbor-
hood is similar to optima.

Furthermore, we investigate the nature of the Hessian in
the RBM training, and based on this nature, two main ad-
vantages of our algorithm can be realized. Firstly, in IPQN,
the Hessian of the objective function is relatively “well con-
ditioned”. Secondly, Newton’s method turns out to be a
good approximation of the natural gradient method (Amari
1998) in our algorithm. Besides, there are still more ad-
vantages of IPQN, i.e., Newton’s method can achieve multi-
times quadratically convergent stage by applying IP method,
and Newton’s method is independent of affine changes.

The rest of this paper is organized as follows. Section
2 describes the specific optimization environment of RBM
training. Then, the basic IP method is proposed in Section
3. In Section 4, we reveal the natural advantages and moti-
vations of our algorithm. Experimental results on RBM are
presented in Section 5. Conclusions and future works are
discussed in Section 6.



The Specific Optimization Problems of RBM
Training

In this section, we discuss two specific optimization prob-
lems of RBM training: the pathological problem and the
non-convex problem. A restricted Boltzmann machine is a
two-layer network in which the stochastic, binary, visible u-
nits v ∈ {0, 1}N are connected to stochastic, binary, hidden
units h ∈ {0, 1}M . The energy of a joint configuration (v,h)
of the visible and hidden units is given by:

E(v, h) = −
∑

i∈visible

aivi −
∑

j∈hidden

bjhj −
∑
i,j

vihjwij

(1)
where vi, hj are binary state of visible unit i and hidden unit
j, respectively, ai and bj are bias of vi and hj , respective-
ly, and wij is weight between vi and hj . We denote model
parameters as θ = {W, a, b} where a = (a1, ..., aN ), b =
(b1, ..., bN ), and W = (wij)N×M for ∀i ∈ {1, ..., N} and
∀j ∈ {1, ...,M}. The assigned probability of v is given by
the marginal probability:

p(v) =
1

Z

∑
h

e−E(v,h). (2)

A practical and fast procedure for estimating the gradient of
log p(v was proposed in (Hinton 2010):

∂logp(v)
∂wij

= ⟨vihj⟩data − ⟨vihj⟩recon (3)

where ⟨·⟩recon represents the expectation with respect to the
“reconstruction” which is obtained by initializing with da-
ta and running finite times Gibbs sampling. This fast learn-
ing procedure is called Contrastive Divergence (CD) method
which could be considered as a stochastic gradient descen-
t (SGD) method. For CD method running x times Gibbs
sampling, we call it CD-x method. Without loss of general-
ity, we will regard CD-1 as the baseline in this paper. For
the sake of brevity, we will denote the objective function
log p(v; θ) as f(θ) in the rest of this paper.

The Pathological Problem of RBM
Considering a “valley” area, in this area, there is one or more
“valley” directions where their gradients are nearly vanished
while the gradients in the directions along the “cliff” are
still existent. A region like this “valley” area is called a
pathological region. Typically, RBM is trained using the S-
GD based CD-1 method. This optimization method is con-
cise. However, it is well known within the optimization
community that gradient descent is unsuitable for optimiz-
ing objectives that exhibit pathological curvature (Martens
2010). We can use the condition number of the sublevel
set of the objective function to measure the pathological de-
gree of RBM training. The condition number has a strong
effect on the efficiency of common methods for optimiza-
tion (Boyd and Vandenberghe 2009). We denote an optimal
parameter vector as θ∗ and the corresponding optimal value,
infθ f(θ) = f(θ∗), as β. When α close to β, the sublevel
set is well approximated by an ellipsoid with center θ∗, i.e.,
Cα ≈ {θ|(θ − θ∗)T∇2f(θ∗)(θ − θ∗) ≤ 2(α− β)}. The

condition number of an ellipsoid is the same as the Eu-
clidean condition number of the matrix that defines it (Boyd
and Vandenberghe 2009). Therefore

lim
α→β

cond(Cα) = κ(∇2f(θ∗))

where κ(·) represents the Euclidean condition number.
Thus, we can use the condition number of the Hessian

matrix at θ∗ (i.e., ∇2f(θ∗) ) to measure the pathological
degree of the objective function around θ∗. It has become
apparent that in order to measure the pathological degree of
RBM training, we have to evaluate the 2-nd order partial
derivative of log p(v). According to the energy function of
RBM, this 2-nd order derivative is given by,

∂2log p (v)
∂wij∂wrs

= ⟨vihjvrhs⟩data − ⟨vihjvrhs⟩model

+⟨vihj⟩2model − ⟨vihj⟩2data
where i, r ∈ 1, 2, ..., N and j, s ∈ 1, 2, ...,M .

We use this equation to evaluate the Hessian matrix at θ∗.
Denoting this matrix as H∗, κ(H∗) is the measurement of
the pathological degree of the RBM training around θ∗. In
our experiment on the MNIST data, even when the model
contains only 10 hidden units, the condition number reached
to 1010(even bigger).

The condition number of the sublevel set ranging up to
very large values such as 1010 do not adversely affect the
Newton’s method while the gradient method can be tolerat-
ed by a far smaller range of condition numbers (Boyd and
Vandenberghe 2009). Thus, applying Newton’s method (as
well as quasi-Newton methods) is a reasonable way to im-
prove the efficiency of RBM training.

The Non-convexity of RBM
A RBM contains hidden units whose states are unobserv-
able. These hidden units give rise to two space symmetries:
the interchange symmetry and the functional symmetry. For
a RBM contains M hidden units, the interchange symmetry
results in M ! equivalent optima (Bishop and others 2006).
Furthermore, depending on the specific active function, the
functional symmetry could also result in many equivalent
optima (Kurková and Kainen 1994). From the statistic view-
point, a RBM is an unidentifiable model since RBMs with
different parameters can achieve the same stationary distri-
bution. This unidentifiability results in the non-convexity of
RBM. That is, there are many negative curvature directions
in the objective function of RBM.

In the development of his Hessian-Free method, Marten-
s used the Gauss-Newton matrix G (an approximation to
the Hessian matrix), instead of the Hessian matrix, to rep-
resent the curvature information. There are many reasons
for choosing G. One of the most important is that G is guar-
anteed to be positive semi-definite, even when un-damped,
which avoids the problem of negative curvature, thus guar-
anteeing the optimization process will work (Martens 2010).
However, it is not easy to evaluate a positive semi-definite
approximation of the Hessian matrix in RBMs as the Gauss-
Newton in feed-forward neural networks. However we still



find another way to apply quasi-Newton methods in RBM
training. We will introduce the iterative project (IP) method
in Section 3. With the iterative project method, our algorith-
m transforms the overall training procedure into an iterative
procedure, i.e., iteratively performing the sampling proce-
dure where it is not necessary to update parameters, and the
sub-training procedure that is convex.

Iterative Project Learning for RBM
Amari (1992) proposed an iterative algorithm for training
Boltzmann machines with inner layer connections and he
also proposed a general iterative framework (i.e., the em
framework) for training general neural networks in (Amar-
i 1995). The em framework estimates the hidden variables
from the observed or specified input-output data based on
the stochastic model. Inspired by this em framework, we
implement IP algorithm in RBM training. In this section,
we will describe the basic IP algorithm for training RBM.

Given the current parameters θi of a RBM and the sam-
ples v (we use “·” to represent samples) that generated from
the underlying distribution q(v), the iterative project method
could be implemented by iteratively executing the next two
procedures:

• a) sampling h from RBM’s conditional distribution
pi(h|v; θi) given v

• b) training a new RBM with those generated samples
(v, h), and then updating the parameter vector of RBM
to be the newly trained one, denoted as θi+1;

until the training comes to the convergence. Note that in b)
procedures all hidden units in RBM are visible in samples
(v,h). If the observed data specifies a binary state for ev-
ery unit in the RBM, the model is convex, i.e., there are no
non-global optima in the parameter space. Thus, we can rea-
sonably apply quasi-Newton methods in sub-training proce-
dures and the saddle point problem can also be solved.

Quasi-Newton Methods in Sub-training
Procedures

We have described the pathological problem of RBM in sec-
tion 2. Our algorithm is robust to the pathological problem
since we proposed to apply quasi-Newton methods in con-
vex sub-training procedures. Besides, there are still more
interesting properties of our algorithm. In Section 4.1, we
investigate the nature of Hessian in the sub-training proce-
dures and reveal two advantages of our algorithm. Then,
we introduce two potential motivations of applying quasi-
Newton methods in Section 4.2. At the end of this section,
we study the details of implementing quasi-Newton methods
in sub-training procedures.

Nature of Hessian in Sub-training
Eq.(3) is just a crude approximation gradient of the log prob-
ability of the training data. This “gradient” is much more
closely approximating the gradient of Kullback-Liebler di-
vergence (Hinton 2010). Denoting the optimal parameter
vector as θ∗, the minimization sequence as {θ(k)}, k ∈

1, 2, ...,, the K-L divergence is given by

D(P (θ)∥Q (θ∗)) =

∫
f (x; θ) log

f (x; θ)

f (x; θ∗)
dx.

For simplicity, we denote the K-L divergence as D(θ) in this
section. Supposing θ# is one of the minima in the neighbor-
hood of θ(k) (i.e., D(θ#) = min{D(θ)} for ∀θ in the neigh-
borhood of θ(k)), the training procedure locally transforms
to the minimization of the distance between the distribution
specified by the current parameter vector and the distribution
specified by θ#, i.e., finding θ# and putting θ(k+1) = θ#.
This distance is given by,

D(P (θ)∥P
(
θ#

)
) =

∫
f (x; θ) log

f (x; θ)

f (x; θ#)
dx.

Thus, the derivative of D is,

∂D

∂θi
=

∫
∂f (x; θ)

∂θi
logf (x; θ) + f(x; θ)

∂logf(x; θ)

∂θi
dx

−
∫

∂f (x; θ)

∂θi
logf

(
x; θ#

)
dx,

the 2-nd derivative of D is,

∂2D

∂θi∂θj
=

∫
[
∂2f (x; θ)

∂θi∂θj
logf (x; θ) +

∂f (x; θ)

∂θi

∂logf (x; θ)

∂θj

+
∂f (x; θ)

∂θj

∂logf (x; θ)

∂θi
+ f (x; θ)

∂2logf (x; θ)

∂θi∂θj
]dx

−
∫

∂2f (x; θ)

∂θi∂θj
logf

(
x; θ#

)
dx

=

∫
∂2f (x; θ)

∂θi∂θj
[logf (x; θ)− logf

(
x; θ#

)
]dx

+

∫
[
∂f (x; θ)

∂θi

∂logf (x; θ)

∂θj
+

∂f (x; θ)

∂θj

∂logf (x; θ)

∂θi
]dx

+

∫
f (x; θ)

∂2logf (x; θ)

∂θi∂θj
dx

we denote the first term as X , i.e.,∫
∂2f (x; θ)

∂θi∂θj
[logf (x; θ)− logf

(
x; θ#

)
]dx = X (4)

the second term satisfies the equation,∫
[
∂f (x; θ)

∂θi

∂logf (x; θ)

∂θj
+

∂f (x; θ)

∂θj

∂logf (x; θ)

∂θi
]dx

= 2E[
∂logf (x; θ)

∂θi

∂logf (x; θ)

∂θj
] (5)

since

∂f (x; θ)

∂θi

∂logf (x; θ)

∂θj
= f (x; θ)

∂logf (x; θ)

∂θi

∂logf (x; θ)

∂θj

∂f (x; θ)

∂θj

∂logf (x; θ)

∂θi
= f (x; θ)

∂logf (x; θ)

∂θi

∂logf (x; θ)

∂θj
;



The last term satisfies the equation,∫
f (x; θ)

∂2logf (x; θ)

∂θi∂θj
dx

= E[
∂2logf (x; θ)

∂θi∂θj
] = −E[

∂logf (x; θ)

∂θi

∂logf (x; θ)

∂θj
]

(6)
From Eq.(4), (5) and (6) we can see that for any θ in the
neighborhood of θ#, the relation between the Hessian ma-
trix and the Fisher information matrix (FIM) is given by,

∂2D

∂θi∂θj
= E[

∂logf (x; θ)

∂θi

∂logf (x; θ)

∂θj
] +X

i.e.,
H = F +X (7)

where F is the FIM, and H is the Hessian matrix.
From above derivations, we can find two advantages of

our algorithm:
Relatively “well conditioned” H: F is a positive semi-
definite matrix (actually, in most cases, F is a positive defi-
nite matrix). Note that the manifold of the sub-training pro-
cedure is convex and the searching is in the neighborhood of
the local minimum θ#. Thus, X is relatively small. Accord-
ing to Eq.(7), H is relatively “well conditioned”.
Approximation of NG: the sub-training procedures are con-
vex and θ# is a minimum (not necessary to be a stationary
point) in the neighborhood of θ(k). Thus, logf (x; θ) is ap-
proaching to logf

(
x; θ#

)
once the searching comes to an

area where θ is close to θ#, i.e.,

logf (x; θ)− logf
(
x; θ#

)
≈ 0

From Eq.(4) and above derivations, we can see that X will
vanish along with the searching. According to Eq.(7), we
have H ≈ F . Therefore, it turns out that Newton’s method
shares the same optimization direction with natural gradient
method since

tNewon = −H−1∇D (θ)

tNG = −F−1∇D(θ)

where tNewton and tNG represent the optimization direction
of Newton method and natural gradient method, respective-
ly. Newton’s method turns out to be a good approximation of
the natural gradient method in the RBM training. Thus, the
excellent properties of the natural gradient method, e.g., the
steepest descent direction and the Fisher-efficient estima-
tion, are succeeded by Newton’s method (as well as quasi-
Newton methods).

Potential Motivations
Here we focus on two potential motivations of applying
quasi-Newton methods in sub-training procedures.
Multi-times quadratically convergent stage: the iterations
in Newton’s method naturally fall into two stages. The op-
timization convergent very fast when it comes to the second
stage which is called the quadratically convergent stage or
the pure Newton stage. The second stage occurs once the

gradient reduced to a threshold (i.e., the searching comes
to an area that is close enough to the optima). The bound
of the number of iterations in the quadratically convergen-
t stage grows extremely slowly with required accuracy, and
can be considered as a constant for practical purposes, say
five or six (Boyd and Vandenberghe 2009). Note that by
applying the IP method, the overall training achieves multi-
times quadratically convergent stage since each sub-training
procedure is a minimization of K-L divergence.
Independent of affine changes: Newton’s method is inde-
pendent of affine changes of coordinates. In other word,
if we change the coordinates, for Newton’s method, the it-
erates are related by the same change (Boyd and Vanden-
berghe 2009). It would be interesting to change the current
coordinates of the model to a suitable one which could make
the manifold smoother.

Implement of Quasi-Newton Method in
Sub-training Procedures
Given all this, we have motivations and necessary conditions
to apply quasi-Newton methods in sub-training procedures.
There are many quasi-Newton methods, and in this paper we
apply the Hessian-Free (HF) method introduced by Marten-
s (Martens 2010). Denoting the initial parameter vector of
the sub-training as ϵ0 and the optimization step as t, the al-
gorithm is given by,

Algorithm 1 subtraining QN (ϵ0, samples vh)
(samples vh: samples generated in the sampling
procedure of IP)

1) Use samples vh to estimate the gradient ∇D(ϵi) via
Gibbs sampling;

2) Solve the system Ht = ∇D(ϵi) via the finite difference
and the conjugate gradient method;

3) Update the parameters of the sub-training: ξi+1 = ξi+ t;

4) Repeat 1), 2), 3) until the tolerance is reached.

When the training comes to the basin of the optimum,
i.e., the quadratically convergent stage occurs, we can use
a fixed step size 1 (Boyd and Vandenberghe 2009). We did
not adapt the learning rate via line search since in each sub-
training procedure the initial distance between the initial pa-
rameter vector and the optimum is much smaller than that of
the overall training. In our experiments, even using the step
size 1 in the early stage, we still achieve relatively effective
convergence.

Experimental Study
In this section, we experimentally investigate the IPQN al-
gorithm in density estimation tasks for restricted Boltzmann
machines. In our experiments, we used the artificial data and
the MNIST digit data. We compare iterative project quasi-
Newton method (IPQN) with Contrastive Divergence (CD-
1), iterative project (IP) and Hessian-Free (HF), and show
that in our experiments IPQN achieves better convergence.
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Figure 1: Density estimation for RBM

Experiments on the Artificial Data
The artificial binary dataset: we first randomly select the
target distribution q(x), which is randomly chosen from the
open probability simplex over the n random variables using
the Dirichlet prior (with parameters alpha =0.5). Then, the
dataset with N samples are generated from q(x). In order
to accurately and effectively evaluate the contrastive diver-
gence, the artificial dataset is set to be 10-dimensional. For
experiments on the artificial data, the baseline is CD-1, and
other three methods are compared:

• IPQN: we change the overall training procedure into an
iterative procedure using the iterative project method and
apply quasi-Newton methods in sub-training procedures;

• IP: we change the overall training procedure into an it-
erative procedure using the iterative project method and
apply CD-1 in sub-training procedures;

• HF: we apply Hessian-Free method without changing the
overall training procedure into an iterative procedure.

K-L divergence is used to evaluate the goodness-of-fit of the
RBM trained by these four algorithms. For all experiments,
we run 20 randomly generated distributions and report the
average K-L divergence. The sample size is from 50 to 500.
Note that our experiments focus on the case that variable
number is relatively small (n = 10) in order to analytically
evaluate the contrastive divergence.

The average K-L divergences between RBMs and the un-
derlying real distributions are shown in Fig.1. Among these
four algorithms, IPQN achieves better result. The perfor-
mance of HF is even worse than CD-1 because of the non-
convexity of RBM.

Intuitively, along with the increasing of the sample size
the estimated probability distribution should be closer to the
underlying distribution. However, we can see that the aver-
age performance of CD-1 fluctuates wildly. This observation
illustrated that CD-1 is more likely to achieve a fluctuant
convergence under some “special” distributions even when

the sample is relatively sufficient. On the other hand, the per-
formances of two algorithms involved with IP method (i.e.
IP and IPQN) improve reasonably along with the increasing
of the sample size. Thus, we can experimentally find that
the em based IP method is more likely to achieve a stable
convergence. Two reasons of the stable convergence are in-
troduced here: first, gradient based methods, such as CD-1,
are proved to be an approximation of IP method (Zhao et
al. 2013). Second, the monotonicity of IP method can be
theoretically guaranteed (Zhao et al. 2013).

The average performance of IPQN is better than IP e-
specially under relatively small sample size (i.e. N =
50,100)(see Fig.1). To explain this performance difference,
we have theoretically explained in Section 2 and Section 4
that quasi-Newton methods can avoid “hang-up” in patho-
logical curvature regions and achieve a Fisher-efficient op-
timum. Fig.2 shows the training trajectories (which are av-
eraged over 20 distributions) of the initial a few seconds of
IPQN procedure and IP procedure. Note that we focus on
the initial a few seconds because we want to obtain the av-
erage trajectory while the training on different distributions
would reach the convergence after different number of step-
s. From Fig.2, we can see that IPQN is much faster than IP
when the sample size is relatively small and this difference is
less significant when the sample is relatively sufficient. Two
reasons result in this observation:

• A RBM can be considered as a non-linear function. A
function with relatively less constraints is more likely to
be ill-posed. In the same way, a RBM specified by rela-
tively insufficient sample is more likely to be pathologi-
cal.

• IPQN algorithm pass through the pathological curvature
regions rapidly while IP exploring slowly.

Experiments on the MNIST Digit Data
In this subsection, we experimentally investigate the per-
formance of IPQN on real-world datasets in the context of
density estimation. We use log-likelihood to evaluate the
goodness-of-fit of the training since it is not easy to com-
pute the contrastive divergence due to the high dimension-
ality. We used a RBM contains 20 hidden units to learn the
distribution density over the MNIST digit data. In our exper-
iments, the training set consists of 10000 cases and the test
set consists of 10000 cases. Four algorithms are compared:
CD-1, HF, IP and IPQN.

CD-1 and HF takes less time to achieve convergence,
but from Fig.3 we can see that IPQN achieves better
log-likelihood(-175.243) than CD-1(-183.792) and HF(-
192.233). Furthermore, we can see that the trajectories of
IPQN and IPs are stable while the trajectory of CD-1 is ex-
tremely fluctuant. This observations agree with the experi-
ments on the artificial data.

We compare IPQN with IPs under different settings (i.e.
learning rate is set to be 0.5, 0.05 and 0.005). We can see
from Fig.3 that IP(0.5) converges quickly, but the corre-
sponding convergent value is relatively low. Even the lower
learning rate IP(0.05), which is much slower, cannot reach
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Figure 2: Trajectory of RBM training

the same convergent value as IPQN. Meanwile, the IP with
learning rate 0.005 is “hang-up” because of the under-fitting.
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Figure 3: Trajectoris of MNIST experiments.
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Figure 4: The first sub-training procedure

In order to investigate the superiority of IPQN in patho-
logical regions, we also observed the trajectories of IPQN
and IP in sub-training procedures. Without loss of generali-
ty, we show trajectories of the first sub-training in Fig.4. We
can see that IP(0.05), which achieves the best convergence in
these three IPs, takes about 50 seconds to achieve the same
log-likelihood as IPQN achieves after the first ten seconds.
After this, IP(0.05) can only obtain a small per-epoch im-
provement since the learning rate is set to be relatively low
to pass through the pathological regions. However, IPQN
still obtain a relatively larger improvement in the patholog-
ical regions. This observation illustrates that IPQN is more
efficient in the pathological problem.

Conclusions and Future Works
We propose an IPQN algorithm for training RBM. Specifi-
cally, we implement IP method to deal with the non-convex
problem, and in the sub-training procedures of IP we apply
quasi-Newton methods to deal with the pathological prob-
lem. Our main contributions are following three folds. First,
we reveal the fact that in the RBM training, the Hessian
matrix consists of the fisher information matrix and a ma-
trix X. Second, in our algorithm, Hessian of the objective
function is relatively “well conditioned” since the X is rel-
atively small in the convex sub-training procedures. Third,
we find that when the optimization approaching to the min-
imum of the neighborhood of the current parameter, New-
ton’s method turns out to be a good approximation of the
natural gradient method. Furthermore, our algorithm can
achieve multi-times quadratically convergent stage, and be
independent of affine coordinate changes. Finding a suitable
coordinate will be left as future works.

On the experimental side, we compared IPQN with CD-
1, HF and IP. In summary, IPQN achieves better conver-
gence than CD-1, HF and IP. Directly applying HF to RBM
training cannot fully stretch the advantages of quasi-Newton
methods because of the non-convexity. Comparing IP based
methods (i.e. IP and IPQN) with CD-1, IP based methods



achieve a stabler convergence and a better convergent value.
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